nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2022, 01, v.32 14-19
改进A~*算法的移动机器人路径规划设计
基金项目(Foundation): 教育部产学合作协同育人项目(202002040003); 天津市高等学校科技发展基金资助项目(JWK1614); 天津市大学生创新训练计划项目(202110066060)
邮箱(Email): liujia0704@126.com;
DOI: 10.19573/j.issn2095-0926.202201003
摘要:

针对移动机器人在障碍物空间采用A~*算法进行路径规划时存在搜索效率低、冗余点和拐点等问题,设计一种基于A~*算法改进的有效路径规划算法。该算法采用精简搜索策略,减少无用子区间的搜索,节约搜索时间。同时根据当前点与目标点之间的相对位置与方向,采用不同的搜索区间,使得搜索更加具有方向性,提高了搜索效率。引入安全保护策略,设置移动机器人与障碍物之间的安全距离,避免二者发生碰撞,保证了移动机器人的安全性。使用路径平滑策略,减少了冗余点和拐点,改善了路径的平滑度。仿真结果表明:本文设计的改进A~*算法提高了搜索效率和安全性,且增加了平滑度。

Abstract:

Low search efficiency,redundant points,and inflection points usually occur when mobile robots use the A~*algorithm for path planning in the obstacle space. To address these problems,an effective path planning algorithm is designed based on an improved A~* algorithm. A simplified search strategy is adopted to reduce the useless sub-intervals search and save time. At the same time,according to the relative position and direction between the current point and the target point,different search intervals are used to make the search more directional and improve efficiency. A safety protection strategy was introduced to set the safety distance between the mobile robot and the obstacle,avoid the collision between them,and ensure the safety of the mobile robot. A path smoothing strategy is employed,which reduces redundant points and inflection points and improves the smoothness of the path. The simulation results show that the improved A~* algorithm designed in this paper improves the search efficiency,security,and smoothness.

参考文献

[1]JEDDISARAVI K,ALITAPPEH R J,A PIMENTA L C,et al.Multi-objective approach for robot motion planning in search tasks[J].Applied Intelligence,2016,45(2):305-321.

[2]霍凤财,迟金,黄梓健,等.移动机器人路径规划算法综述[J].吉林大学学报(信息科学版),2018,36(6):639-647.

[3]王梓强,胡晓光,李晓筱,等.移动机器人全局路径规划算法综述[EB/OL].(2021-06-29)[2021-07-13].http://kns.cnki.net/kcms/detail/50.1075.TP.20210628.1829.043.html.

[4]张志文,张鹏,毛虎平,等.改进A~*算法的机器人路径规划研究[J].电光与控制,2021,28(4):21-25.

[5]ANDRS E,GONZáLEZ-ARRIBAS D,SOLER M,et al.Informed scenario-based RRT for aircraft trajectory planning under ensemble forecasting of thunderstorms[J].Transportation Research Part C:Emerging Technologies,2021,129:103232.

[6]LI L Y,WU D F,HUANG Y Q,et al.A path planning strategy unified with a COLREGS collision avoidance function based on deep reinforcement learning and artificial potential field[J].Applied Ocean Research,2021,113:102759.

[7]卞永明,季鹏成,周怡和,等.基于改进型DWA的移动机器人避障路径规划[J].中国工程机械学报,2021,19(1):44-49.

[8]陈若男,文聪聪,彭玲,等.改进A~*算法在机器人室内路径规划中的应用[J].计算机应用,2019,39(4):1006-1011.

[9]李晓露,熊禾根,陶永,等.基于改进A~*算法的移动机器人全局最优路径规划[J].高技术通讯,2021,31(3):306-314.

[10]王红卫,马勇,谢勇,等.基于平滑A~*算法的移动机器人路径规划[J].同济大学学报(自然科学版),2010,38(11):1647-1650,1655.

[11]高庆吉,于咏生,胡丹丹.基于改进A~*算法的可行性路径搜索及优化[J].中国民航学院学报,2005,23(4):42-45.

[12]吴鹏,桑成军,陆忠华,等.基于改进A~*算法的移动机器人路径规划研究[J].计算机工程与应用,2019,55(21):227-233.

[13]顾辰.改进的A~*算法在机器人路径规划中的应用[J].电子设计工程,2014,22(19):96-98,102.

[14]陈智康,刘佳,王丹丹,等.改进Dijkstra机器人路径规划算法研究[J].天津职业技术师范大学学报,2020,30(3):30-35.

[15]余文凯,章政,付雪画,等.基于地图预处理及改进A~*算法的路径规划[J].高技术通讯,2020,30(4):383-390.

[16]刘子豪,赵津,刘畅,等.基于改进A~*算法室内移动机器人路径规划[J].计算机工程与应用,2021,57(2):186-190.

[17]陈娇,徐菱,陈佳,刘卿.改进A~*和动态窗口法的移动机器人路径规划[EB/OL].(2020-10-26)[2021-07-13].http://kns.cnki.net/kcms/detail/11.5946.tp.20201026.1053.026.html.

[18]王中玉,曾国辉,黄勃.基于改进双向A~*的移动机器人路径规划算法[J].传感器与微系统,2020,39(11):141-143,147.

[19]石为人,王楷.基于Floyd算法的移动机器人最短路径规划研究[J].仪器仪表学报,2009,30(10):2088-2092.

[20]陈欢,王志荣.基于A~*与Floyd算法移动机器人路径规划研究[J].建设机械技术与管理,2018,31(3):43-45.

[21]陆皖麟,雷景森,邵炎.基于改进A~*算法的移动机器人路径规划[J].兵器装备工程学报,2019,40(4):197-201.

基本信息:

DOI:10.19573/j.issn2095-0926.202201003

中图分类号:TP242

引用信息:

[1]申瑞,刘佳,王梦园等.改进A~*算法的移动机器人路径规划设计[J].天津职业技术师范大学学报,2022,32(01):14-19.DOI:10.19573/j.issn2095-0926.202201003.

基金信息:

教育部产学合作协同育人项目(202002040003); 天津市高等学校科技发展基金资助项目(JWK1614); 天津市大学生创新训练计划项目(202110066060)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文