365 | 0 | 38 |
下载次数 | 被引频次 | 阅读次数 |
针对动态窗口法在动态障碍物环境下避障效果差、路径非最优等问题,将改进间隙跟踪法(improved follow the gap method,IFGM)与改进动态窗口法(improved dynamic window approach,IDWA)进行融合。改进间隙跟踪法的效用函数考虑障碍物间的间隙大小和智能小车与目标坐标的夹角来寻找可行间隙及合理的航向角;在DWA原有评价函数中引入动态避障函数,使智能小车在面对多个动态障碍物时能灵敏地控制速度,以达到敏捷避障目的。实验结果表明:与传统DWA算法相比,IFGM-IDWA融合算法减少了15%~25%的碰撞率,能够更加灵活地控制智能小车的平移速度和旋转速度,更加有效地保证智能小车运动过程中的安全性,且减少了时间消耗,提高了运动效率。
Abstract:Aiming at the problems such as poor obstacle avoidance performance and suboptimal path planning, this study proposes a fusion of Improved Follow the Gap Method(IFGM) and Improved Dynamic Window Approach(IDWA). Firstly,the utility function of follow the gap method is improved, and the feasible gap and reasonable heading Angle are located by considering the gap between obstacles and the angle between the intelligent car and the target coordinates. Then, the dynamic obstacle avoidance function is introduced into the original evaluation function of Dynamic Window Approach(DWA), so that the intelligent car can control the speed sensitively when facing multiple dynamic obstacles, so as to achieve agile obstacle avoidance. Experiments show that compared with the traditional DWA algorithm, IFGM-IDWA fusion algorithm can reduce the collision avoidance rate by 15%~25%, and allow for more flexible control of the intelligent vehicle′s translational and rotational speeds, ensure the safety of the intelligent car in the process of motion more effectively, reduce time consumption, and improve the movement efficiency.
[1]周轶.基于改进A*和DWA算法的室内移动机器人路径规划应用研究[D].郑州:河南工业大学,2021.
[2] ZHAO Y,LIU Y Y,GAO H W,et al. Research on informed-RRT*with improved initial solution[C]//2022 4th International Conference on Intelligent Control,Measurement and Signal Processing(ICMSP). Hangzhou:IEEE,2022:977-981.
[3]申瑞,刘佳,王梦园,等.改进A*算法的移动机器人路径规划设计[J].天津职业技术师范大学学报,2022,32(1):14-19.
[4] KOBAYASHI M,MOTOI N. Local path planning:dynamic window approach with virtual manipulators considering dynamic obstacles[J]. IEEE Access,2022,10:17018-17029.
[5]陈颖杰,高茂庭.基于信息素初始分配和动态更新的蚁群算法[J].计算机工程与应用,2022,58(2):95-101.
[6]张啸天,陈熙源.基于IRRT*和DWA的无人艇混合路径规划方法[J].传感技术学报,2022,35(11):1469-1474.
[7]金梅,李清天,张立国.基于安全A*与DWA算法融合的军队车场巡检机器人路径规划[J].高技术通讯,2022,32(11):1202-1212.
[8]孙睿彤,袁庆霓,衣君辉,等.改进粒子群算法和动态窗口法的动态路径规划[J].小型微型计算机系统,2023,44(8):1707-1712.
[9]王鹏凯.基于深度强化学习和动态窗口法的移动机器人融合路径规划算法研究[D].西安:长安大学,2022.
[10]原新,苑新伟,刘志林.基于蝙蝠算法和动态窗口法的混合路径规划[J].实验技术与管理,2021,38(10):177-182,192.
[11] SEZER V,GOKASAN M. A novel obstacle avoidance algorithm:"Follow the Gap Method"[J]. Robotics and Autonomous Systems,2012,60(9):1123-1134.
[12]李兴民. AGV路径规划的智能算法研究[D].青岛:青岛大学,2022.
[13]FOX D,BURGARD W,THRUN S. The dynamic window approach to collision avoidance[J]. IEEE Robotics&Automation Magazine,1997,4(1):23-33.
[14]孙嘉明,刘卫朋,巩祥瑞,等.基于距离抑制向量的机器人动态路径规划方法[J].燕山大学学报,2022,46(5):408-416,426.
[15]迟旭,李花,费继友.基于改进A*算法与动态窗口法融合的机器人随机避障方法研究[J].仪器仪表学报,2021,42(3):132-140.
[16]卞永明,季鹏成,周怡和,等.基于改进型DWA的移动机器人避障路径规划[J].中国工程机械学报,2021,19(1):44-49.
[17]常彦文.多智能车协同编队与运动规划方法的研究[D].北京:北京石油化工学院,2022.
[18]王铎,杜峰,关志伟,等.狭窄紧凑环境下智能小车SLAM导航实验[J].天津职业技术师范大学学报,2022,32(4):29-34.
[19]吴迪,杜峰,蔡一杰,等.基于麦克纳姆轮的智能小车SLAM导航研究[J].装备制造技术,2020(10):20-25.
[20]吴迪.基于多传感器融合的智能小车SLAM导航研究[D].天津:天津职业技术师范大学,2021.
基本信息:
DOI:10.19573/j.issn2095-0926.202402004
中图分类号:TP18
引用信息:
[1]杜琼,杜峰,王铎等.基于IFGM-IDWA融合算法的智能小车路径规划[J].天津职业技术师范大学学报,2024,34(02):25-31.DOI:10.19573/j.issn2095-0926.202402004.
基金信息:
天津市研究生科研创新项目(2022SKYZ385)