nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2019, 04, v.29;No.101 21-24+31
基于卷积神经网络图像识别的港口防火系统设计
基金项目(Foundation): 天津市津南区科技计划项目(20161508);; 天津市教委科研计划项目(JWK1604)
邮箱(Email):
DOI: 10.19573/j.issn2095-0926.201904005
摘要:

针对港口安全问题,为扩大港口监控范围,提高火灾识别速度,提出了一种基于无人机的图像采集和卷积神经网络图像识别算法的设计方案。该设计通过图传技术收集无人机监测图像中的信号,提取采集图像的特征值,实现火灾信号识别。实验结果表明:在港口防火系统中卷积神经网络图像识别方法与BP神经网络相比,识别速率和识别效率均有较大提高。

Abstract:

Aiming at the port fire safety problem,an image acquisition and convolutional neural network image recognition algorithm based on drone is proposed in order to improve the port monitoring range and fire identification speed.The signal in the UAV monitoring image is collected by the image transmission technology,and the feature values of the acquired image are extracted to realize the fire signal identification. The experimental results show that the convolutional neural network image recognition method can improve not only the recognition rate but also the recognition efficiency in the port fire prevention system compared with the BP neural network.

参考文献

[1]江正,刘辉,向先波.基于C/S架构的船舶电站网络化无线监控系统设计[J].中国造船,2015,(4):179–187.

[2]魏湧明,全吉成,侯宇青阳.基于YOLO v2的无人机航拍图像定位研究[J].激光与光电子学进展,2017,54(11):101-110.

[3]赵伟,于芳芳,范晓婧,等.无人机森林防火系统的火灾图像识别仿真[J].计算机仿真,2018,35(9):459-464.

[4]彭湛博.无人机实时高清图传系统的设计与实现[D].西安:西安电子科技大学,2018.

[5]周正阳.物联网技术在港口信息化建设中的应用现状分析[J].中国化工贸易,2015,7(23):259.

[6]李名,胡勤友,孟良.基于AIS的船舶运动轨迹压缩技术研究[J].航海技术,2010(1):11-13.

[7]周飞燕,金林鹏,董军.卷积神经网络研究综述[J].计算机学报,2017,40(6):1229-1251.

[8]陈培昕,刘嘉新,蒲先良,等.基于卷积神经网络的林火烟雾识别[J].仪表技术,2019(5):21-24.

[9]吴海丽.基于卷积神经网络的图像大数据识别[J].山西大同大学学报(自然科学版),2019,35(2):23-25,37.

[10]傅天驹,郑嫦娥,田野,等.复杂背景下基于深度卷积神经网络的森林火灾识别[J].计算机与现代化,2016(3):52-57.

[11]李君宝,杨文慧,许剑清,等.基于深度卷积网络的SAR图像目标检测识别[J].导航定位与授时,2017,4(1):60-66.

[12]WAHLBECK K,TUUNAINEN A,AHOKAS A,et al. Dropout rates in randomised antipsychotic drug trials[J]. Psychopharmacology,2001,155(3):230-233.

[13] GAO Y Q,MOSALAM K M. Deep transfer learning for image-based structural damage recognition[J]. ComputerAided Civil and Infrastructure Engineering,2018,33(9):748-768.

[14]姚群力,胡显,雷宏.深度卷积神经网络在目标检测中的研究进展[J].计算机工程与应用,2018,54(17):1-9.

[15] KIM S,KIM H,LEE S Y,et al. Design of high-performance unified image scaler circuit for real-time object detection[C]//CHO K. 2013 International Conference on Electronics,Computer and Computation(ICECCO). Ankara:IEEE,2013:2055-2073.

[16] AKAGI M,NAKAMURA Y,HIGAKI T,et al. Correction to:deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT[J]. European Radiology,2019,29(8):63-73.

基本信息:

DOI:10.19573/j.issn2095-0926.201904005

中图分类号:TP391.41;TP183;U653.99

引用信息:

[1]许明伟,王东涛,叶剑华.基于卷积神经网络图像识别的港口防火系统设计[J].天津职业技术师范大学学报,2019,29(04):21-24+31.DOI:10.19573/j.issn2095-0926.201904005.

基金信息:

天津市津南区科技计划项目(20161508);; 天津市教委科研计划项目(JWK1604)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文