天津职业技术师范大学信息技术工程学院;
针对XdeepFM模型将嵌入特征直接送入特征交互网络后使网络获取到大量冗余特征,同时模型二阶特征交叉能力不足的问题,采用图神经网络和注意力机制优化了模型的特征提取能力,并添加因子分解机算法提高了模型的二阶交叉能力,提出了GA-XdeepFM-FM新模型,并在公开数据集Criteo和Avazu上进行实验。实验结果表明:相比较XdeepFM算法以及经典算法,模型的AUC和Logloss皆有显著提高,证明了新模型在特征提取、特征交叉和预测广告点击率方面的有效性,为相关应用提供了更为有效的解决方案。
149 | 0 | 9 |
下载次数 | 被引频次 | 阅读次数 |
[1] ZOU D,WANG Z,Z,LEIMIN,et al. Deep field relation neural network for click-through rate prediction[J]. Information Sciences,2021,577:128-139.
[2] CHANG Y W,HSIEH C J,CHANG K W,et al. Training and testing low-degree polynomial data mappings via linear SVM[J]. Journal of Machine Learning Research,2010,11(4):1471-1490.
[3] RENDLE S. Factorization machines[C]//2010 IEEE International Conference on Data Mining. Sydney,NSW,Australia:IEEE,2011:995-1000.
[4] JUAN Y,ZHUANG Y,CHIN W S,et al. Field-aware factorization machines for CTR prediction[C]//Proceedings of the 10th ACM Conference on Recommender Systems. New York,USA:ACM,2016:43-50.
[5] DEVLIN J,CHANG M,LEE K,et al. BERT:pre-training of deep bidirectional transformers for language understanding[EB/OL].[2018-10-04]. https://arxiv.org/abs/1810.04805.
[6] LEE J,YOON W,KIM S,et al. BioBERT:a pre-trained biomedical language representation model for biomedical text mining[J]. Bioinformatics,2020,36(4):1234-1240.
[7] XIAO J,YE H,HE X,et al. Attentional factorization machines:learning the weight of feature interactions via attention networks[EB/OL].[2017-08-17]. https://arxiv.org/abs/1708.04617.
[8] SONG W P,SHI C C,XIAO Z P,et al. AutoInt:automatic feature interaction learning via self-attentive neural networks[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York,USA:ACM,2019:1161-1170.
[9] HE K M,ZHANG X Y,REN S Q,et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas,NV,USA:IEEE,2016:770-778.
[10]ZHANG W N,DU T M,WANG J. Deep Learning Over Multifield Categorical Data[M]. Cham:Spr inger International Publishing,2016:45-57.
[11] QU Y R,CAI H,REN K,et al. Product-based neural networks for user response prediction[C]//2016 IEEE 16th International Conference on Data Mining(ICDM). Barcelona,Spain:IEEE,2016:1149-1154.
[12] CHENG H T,KOC L,HARMSEN J,et al. Wide&deep learning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. New York,USA:ACM,2016:7-10.
[13] GUO H,TANG R,YE Y,et al. DeepFM:a factorizationmachine based neural network for CTR prediction[EB/OL].[2017-03-04]. https://arxiv.org/abs/1703.04247.
[14]WANG R X,FU B,FU G,et al. Deep&cross network for ad click predictions[C]//Proceedings of the ADKDD′17. Halifax NS Canada. New York,USA:ACM,2017:1-7.
[15]LIAN J X,ZHOU X H,ZHANG F Z,et al. xDeepFM:combining explicit and implicit feature interactions for recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery&Data Mining. London United Kingdom. New York,USA:ACM,2018:1754-1763.
[16]CHUNG J,GULCEHRE C,CHO K,et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL].[2014-04-05]. https://arxiv.org/abs/1412.3555.
[17] SCARSELLI F,GORI M,TSOI A C,et al. The graph neural network model[J]. IEEE Transactions on Neural Networks,2009,20(1):61-80.
[18]KIPF T N,WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL].[2016-09-07]. https://arxiv.org/abs/1609.02907.
[19] VELI CˇKOVI C'P,CUCURULL G,CASANOVA A,et al.Graph attention networks[EB/OL].[2017-10-03]. https://arxiv.org/abs/1710.10903.
[20] CHO K,VAN MERRIENBOER B,GULCEHRE C,et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation[EB/OL].[2014-06-07].https://arxiv.org/abs/1406.1078.
基本信息:
DOI:10.19573/j.issn2095-0926.202303008
中图分类号:TP391.3;TP183
引用信息:
[1]王英桥,武志峰.融合图神经网络与注意力机制的XdeepFM改进算法[J].天津职业技术师范大学学报,2023,33(03):42-48.DOI:10.19573/j.issn2095-0926.202303008.
基金信息:
教育部人文社会科学研究一般项目(22YJC870018)