102 | 5 | 7 |
下载次数 | 被引频次 | 阅读次数 |
针对分数阶复混沌系统同步问题的研究,提出一种2个驱动系统和1个响应系统的组合同步问题,设计一种基于主动控制原理的控制器。以复Lorenz系统、新的混沌非线性分数阶复系统和复T系统为例,通过主动控制给出同步控制器的设计原理;基于分数阶线性稳定性理论,由Lyapunov函数证明了误差系统的稳定性,从而使异构分数阶复混沌系统达到组合同步;依靠数值模拟验证主动控制方法在异构非线性复混沌系统的组合同步的有效性和可行性。
Abstract:Aiming at the synchronization of fractional complex chaotic system,this paper attempts to achieve hybrid synchronization between two drive systems and one response system and designs a controller based on active control principle. Taking complex Lorenz system,a new chaotic nonlinear fractional complex system and complex T system as an example,the design principle of synchronization controller is given by active control,and is based on fractional-order linear stability theory. The stability of the error system is proved by Lyapunov function,so as to realize the combined synchronization of homogeneous heterogeneous fractional complex chaotic system. Thus the heterogeneous fractional complex chaotic system achieves combined synchronization. The effectiveness and feasibility of the combined synchronization of the active control method in the heterogeneous nonlinear complex chaotic system are verified by numerical simulation.
[1]孙军伟,李楠,王延峰.基于自适应控制的八个混沌系统的多级组合同步[J].计算机应用研究,2018,37(1):1-10.
[2]张芳芳.复动力系统的混沌控制与同步及其在通信中的应用[D].济南:山东大学,2014.
[3]雷腾飞,付海燕,陈恒,等.一类复T混沌系统的动力学分析与同步控制[J].嘉应学院学报,2016,34(8):47-53.
[4]张若洵,杨世平.分数阶混沌系统的异结构同步[J].物理学报,2008,57(11):6852-6858.
[5]师东海.一类复混沌系统的简化和同步控制及其应用研究[D].哈尔滨:哈尔滨工程大学,2016.
[6]涂俐兰,王宇娟,胡洋.不确定临界混沌系统的有限时间同步与参数识别[J].数学的实践与认识,2018,48(19):105-112.
[7]赵灵冬,胡建兵,刘旭辉.参数未知的分数阶超混沌Lorenz系统的自适应追踪控制与同步[J].物理学报,2010,59(4):2305-2309.
[8]张檬,韩敏.基于滑模控制法的不确定复杂网络间有限时间组合同步[J].控制与决策,2017,32(8):1533-1536.
[9]张宗瑶,赵小山,卢雅,等.分数阶超混沌系统异构射影延迟同步研究[J].天津职业技术师范大学学报,2018,28(2):39-43.
[10]林慧妮.非同元次分数阶混沌系统的组合同步[J].漳州师范学院学报(自然科学版),2013,26(3):1-7.
[11]董俊,张广军,姚宏,等.异构的分数阶超混沌系统函数投影同步及参数辨识[J].电子与信息学报,2013,35(6):1371-1375.
[12] SUN J W,FAN J,CUI G Z. Function combination synchronization of three chaotic complex systems[J]. Nonlinear Dynamics,2016,127:9504-9516.
[13]YANG C D,CAI H,ZHOU P. Compound generalized function projective synchronization for fractional-order chaotic systems[J]. Discrete Dynamics in Nature and Society,2016,2016:1-8.
[14]张晓青.分数阶与整数阶混沌系统的错位投影同步[J].河南科学,2019,37(1):26-30.
[15] MAHMOUD G M,AHMED M E,ABED-ELHAMEED T M.On fractional-order hyperchaotic complex systems and their generalized function projective combination synchronization[J]. Optik,2017,130:398-406.
[16]姜翠美.分数阶复动力系统的定性分析与同步研究[D].济南:山东大学,2017.
基本信息:
DOI:10.19573/j.issn2095-0926.201903009
中图分类号:O415.5;O231
引用信息:
[1]卢雅,赵小山,徐涛.一类分数阶复混沌系统的异构组合同步[J].天津职业技术师范大学学报,2019,29(03):40-44.DOI:10.19573/j.issn2095-0926.201903009.
基金信息:
天津职业技术师范大学科研发展基金项目(KJ1814)