292 | 0 | 152 |
下载次数 | 被引频次 | 阅读次数 |
针对电动自行车交通事故分析中缺少对建成环境因素影响的考虑,对电动自行车交通事故与建成环境的空间交互影响进行研究。将某市划分为2 114个交通小区,采集该市2 640起电动自行车交通事故数据,选取人口统计学特征、道路属性、兴趣点(point of interest,POI)等10个建成环境解释变量进行分析。基于空间计量经济学理论构建空间滞后模型、空间误差模型和空间杜宾模型,通过比选确定最优模型来研究电动自行车事故与建成环境的交互关系。结果表明:空间杜宾模型在拟合度和解释力上优于其他模型;该模型揭示了电动自行车事故与建成环境因素之间的直接效应、间接效应及总体效应,明确了事故发生的空间规律,为电动自行车事故高发区域的识别及预防提供了科学依据。
Abstract:This paper addresses the lack of systematic consideration of built environment factors in the analysis of electric bicycle traffic accidents, mainly conducting empirical research on the spatial interaction effects between electric bicycle traffic accidents and the built environment. The city was divided into 2 114 traffic zones, with data collected on 2 640 electric bicycle traffic accidents. Ten built environment explanatory variables, including demographic characteristics, road attributes, and points of interest(POI) etc., were selected for analysis. Based on the theory of spatial econometrics, spatial lag models, spatial error models, and spatial Durbin models were constructed, and the optimal model was determined through comparison to study the interaction between electric bicycle accidents and the built environment. The results show that the spatial Durbin model is superior to other models in terms of fit and explanatory power. Through this model, the direct, indirect, and total effects between electric bicycle accidents and built environment factors are revealed, clarifying the spatial patterns of accident occurrence, and providing a scientific basis for the identification and prevention of high-incidence areas of electric bicycle accidents.
[1] ELLILOT F M,CHRISTOPHER C,秦维.电动自行车交通发展的主要趋势:近10年文献综述[J].城市交通,2016,14(2):83-96.
[2]董春娇,董黛悦,诸葛承祥,等.电动自行车出行特性及骑行决策行为建模[J].吉林大学学报(工学版),2022,52(11):2618-2625.
[3] JASIūNIEN E V,TUMAVIGˇE A. Impact of E-scooters on road safety:a case study in Lithuania[J]. The Baltic Journal of Road and Bridge Engineering,2022,17(4):18-34.
[4] MA C X,YANG D,ZHOU J B,et al. Risk riding behaviors of urban E-bikes:a literature review[J]. International Journal of Environmental Research and Public Health,2019,16(13):2308.
[5] YUAN Q,YANG H Q,HUANG J,et al. What factors impact injury severity of vehicle to electric bike crashes in China[J].Advances in Mechanical Engineering,2017,9(8):168781401770054.
[6]李英帅,张旭,王卫杰,等.基于随机森林的电动自行车骑行者事故伤害程度影响因素分析[J].交通运输系统工程与信息,2021,21(1):196-200.
[7] LEE J,YASMIN S,ELURU N,et al. Analysis of crash proportion by vehicle type at traffic analysis zone level:a mixed fractional split multinomial logit modeling approach with spatial effects[J]. Accident Analysis&Prevention,2018,111:12-22.
[8] DONG N,HUANG H L,ZHENG L. Support vector machine in crash prediction at the level of traffic analysis zones:assessing the spatial proximity effects[J]. Accident Analysis&Prevention,2015,82:192-198.
[9] ZHANG C P,YAN X D,MA L,et al. Crash prediction and risk evaluation based on traffic analysis zones[J]. Mathematical Problems in Engineering,2014,2014:987978.
[10] WANG S H,CHEN Y Y,HUANG J L,et al. Spatial relationships between alcohol outlet densities and drunk driving crashes:an empirical study of Tianjin in China[J]. Journal of Safety Research,2020,74:17-25.
[11] WANG S H,LIU J Z,CHEN N,et al. How does the built environment affect drunk-driving crashes a spatial heterogeneity analysis[J]. Applied Sciences,2023,13(21):11813.
[12]原毅军,高康.产业协同集聚、空间知识溢出与区域创新效率[J].科学学研究,2020,38(11):1966-1975,2007.
[13]姜磊.空间回归模型选择的反思[J].统计与信息论坛,2016,31(10):10-16.
[14]文冰梅,赵联文,黄磊. AIC准则与留一法交叉验证渐近等价的证明[J].统计与决策,2022,38(6):40-43.
[15]ELHORST J P. Matlab software for spatial panels[J]. International Regional Science Review,2014,37(3):389-405.
基本信息:
DOI:10.19573/j.issn2095-0926.202402005
中图分类号:U491.31
引用信息:
[1]刘霞,王少华,张思楠等.电动自行车交通事故与建成环境的空间效应[J].天津职业技术师范大学学报,2024,34(02):32-37+43.DOI:10.19573/j.issn2095-0926.202402005.
基金信息:
天津市优秀企业科技特派员项目(22YDTPJC00570); 天津市教委科研计划项目(2021KJ017)