265 | 1 | 18 |
下载次数 | 被引频次 | 阅读次数 |
针对非线性太赫兹超材料很难实现这一科学问题,解释了超材料微结构的近场增强效应产生机理,概述了该效应在光波段、红外波段和太赫兹波段的研究现状,总结得出近场增强效应对非线性效应的实现十分有利,进而提出利用超材料微结构的近场增强效应提高石墨烯的非线性效应。该方法为可调谐非线性太赫兹调制器件的设计提供了新的思路。
Abstract:Since nonlinear Terahertz metamaterials is very difficult to realize,this paper attempts to explain the mechanism of near-field enhancement effect of metamaterial microstructure,and summarizes the research status of this effect under optical band,infrared band and Terahertz band. It is found that the near-field enhancement effect is beneficial to the study of nonlinear effects. Therefore,it is proposed that the nonlinear effect of graphene could be enhanced by using the near field enhancement effect of metamaterial microstructure. This method would bring a new perspective to design tunable nonlinear Terahertz modulators.
[1] TONOUCHI M. Cutting-edge terahertz technology[J]. Nature Photonics,2007,1(2):97-105.
[2] TAO H,PAILLA W J,ZHANG X,et al. Recent progress in electromagnetic metamaterial devices for terahertz applications[J]. IEEE Journal of Selected Topics in Quantum Electronics,2011,17(1):92-101.
[3] LIANG D,GU J,HAN J G,et al. Robust large dimension terahertz cloaking[J]. Advanced Materials,2012,24(7):916-921.
[4] TAO H,LANDY N I,BINGHAM C M,et al. A metamaterial absorber for the terahertz regime:design,fabrication and characterization[J]. Optics Express,2008,16(10):7181-7188.
[5] CONG L,CAO W,ZHANG X,et al. A perfect metamaterial polarization rotator[J]. Applied Physics Letters,2013,103(17):171107.
[6] O′HARA J F,SINGH R,BRENER I,et al. Thin-film sensing with planar terahertz metamaterials:sensitivity and limitations[J]. Optics Express,2008,16(3):1786-1795.
[7] LU M,LI W,BROWN E R. Second-order bandpass terahertz filter achieved by multilayer complementary metamaterial structures[J]. Optics Letters,2011,36(7):1071-1073.
[8] CHEN H T,PADILLA W J,ZIDE J M O,et al. Active terahertz metamaterial devices[J]. Nature,2006,444(7119):597-600.
[9] ZHANG X,TIAN Z,YUE W,et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities[J]. Advanced Materials,2013,25(33):4567-4572.
[10] GU J Q,SINGH R,LIU X J,et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nature Communications,2012,3:1151.
[11]CHEN H T,YANG H,SINGH R,et al. Tuning the resonance in high-temperature superconducting terahertz metamaterials[J]. Physical Review Letters,2010,105(24):247402.
[12]ZHANG C H,JIN B B,HAN J G,et al. Nonlinear response of superconducting NbN thin film and NbN metamaterial induced by intense terahertz pulses[J]. New Journal of Physics,2013,15(5):055017.
[13]CUBUKCU E,ZHANG S,PARK Y S,et al. Split ring resonator sensors for infrared detection of single molecular monolayers[J]. Applied Physics Letters,2009,95(4):043113.
[14] LE F,BRANDI D W,URZHUMOV Y A,et al. Metallic nanoparticle arrays:a common substrate for both surfaceenhanced Raman scattering and surface-enhanced infrared absorption[J]. ACS Nano,2008,2(4):707-718.
[15] SCHULLER J A,BARNARD E S,CAI W. Plasmonics for extreme light concentration and manipulation[J]. Nature Materials,2010,9(3):193-204.
[16] SEO M A,PARK H R,KOO S M,et al.Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit[J]. Nature Photonics,2009,3(3):152-156.
[17]ZHANG H F,LI C,ZHANG C H,et al. Experimental study on the transition of plasmonic resonance modes in double-ring dimers by conductive junctions in the terahertz regime[J].Optics Express,2016,24(24):27415-27422.
[18]NAKAJIMA M,KUAIHARA T,TADOKORO Y,et al. Application of terahertz field enhancement effect in metal microstructures[J]. Journal of Infrared,Millimeter,and Terahertz Waves,2016,37(12):1199-1212.
[19]LOW T,AVOURIS P. Graphene plasmonics for terahertz to mid-infrared applications[J]. ACS Nano,2014,8(2):1086-1101.
[20]JU L,GENG B S,HORNG J,et al. Graphene plasmonics for tunable terahertz metamaterials[J]. Nature Nanotechnology,2011,6(10):630-634.
[21] SENSAL-RODRIGUEZ B,YAN R S,KELLY M M,et al.Broadband graphene terahertz modulators enabled by intraband transitions[J]. Nature Communications,2012,3:780.
[22] JNAWALI G,RAO Y,YAN H G,et al. Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation[J]. Nano Letters,2013,13(2):524-530.
[23] LEE S H,CHOI M,KIM T T,et al. Switching terahertz waves with gate-controlled active graphene metamaterials[J].Nature Materials,2012,11(11):936-941.
[24]LIU P Q,LUXMOORE I J,MIKHAILOV S A,et al. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons[J]. Nature Communications,2015,6:8969.
[25] WEN Q Y,TIAN W,MAO Q,et al. Graphene based alloptical spatial terahertz modulator[J]. Scientific Reports,2015,4:7409.
[26] LI Q,TIAN Z,ZHANG X Q,et al. Active graphene-silicon hybrid diode for terahertz waves[J]. Nature Communications,2015,6:7082.
[27] LI Q,TIAN Z,ZHANG X Q,et al. Dual control of active graphene-silicon hybrid metamaterial devices[J]. Carbon,2015,90:146-153.
[28]AI-NAIB I,SHARMA G,DIGNAM M M,et al. Effect of local field enhancement on the nonlinear terahertz response of a silicon-based metamaterial[J]. Physical Review B,2013,88(19):195203.
[29] PAUL M J,CHANG Y C,THOMPSON Z J,et al. High-field terahertz response of graphene[J]. New Journal of Physics,2013,15(8):085019.
[30]HAFEZ H A,AI-NAIB I,DIGNAM M M,et al. Nonlinear terahertz field-induced carrier dynamics in photoexcited epitaxial monolayer graphene[J]. Physical Review B,2015,91:035422.
[31] RAZAVIPOUR H,YANGW,GUERMOUNE A,et al. Highfield response of gated graphene at terahertz frequencies[J].Physical Review B,2015,92(24):245421.
[32] SUESS R J,WINNERL S,SCHNERIDER H,et al. Role of transient reflection in graphene nonlinear infrared optics[J].ACS Photonics,2016,3(6):1069-1075.
[33] JADIDI M M,KONIG-OTTO J C,WINNERL S,et al.Nonlinear terahertz absorption of graphene plasmons[J].Nano Letters,2016,16(4):2734-2738.
[34]TASSIN P,KOSCHNY T,KAFESAKI M,et al. A comparison of graphene,superconductors and metals as conductors for metamaterials and plasmonics[J]. Nature Photonics,2012,6(4):259-264.
[35] LI S X,NUGRAHA P S,SU X Q,et al. Terahertz electric field modulated mode coupling in graphene-metal hybrid meta-materials[J]. Optics Express,2019,27(3):2317-2326.
[36] LIU M K,HWANG H Y,TAO H,et al. Terahertz-fieldinduced insulator-to-metal transition in vanadium dioxide metamaterial[J]. Nature,2012,487(7407):345-348.
[37]FAN K B,HWANG H Y,LIU M K,et al. Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs[J]. Physical Review Letters,2013,110(21):217404.
基本信息:
DOI:10.19573/j.issn2095-0926.201903008
中图分类号:TB34;O441.4
引用信息:
[1]刘姗姗,李泉,王爽等.非线性太赫兹超材料研究与展望[J].天津职业技术师范大学学报,2019,29(03):35-39+72.DOI:10.19573/j.issn2095-0926.201903008.
基金信息:
天津市教委科研计划项目(JWK1608)