214 | 4 | 18 |
下载次数 | 被引频次 | 阅读次数 |
由于受多种外界因素的影响,春节前后月度售电量的预测一直存在较大的误差。针对这一问题,提出了一种基于X12季节分解方法、ARIMA模型及因子分解机的综合预测模型。首先采用X12季节分解法将月度售电量历史数据分解为趋势分量、季节分量及随机分量;然后使用ARIMA模型和历史数据平均法分别对趋势分量、随机分量和季节分量进行预测;最后应用因子分解机算法对历史1—3月份售电量占季比与对应月份首日距春节当日的天数进行回归分析,以此对预测结果进行修正。结果表明:采用Eviews软件对历史数据进行统计与计算,将预测结果与传统ARIMA模型及TRAMO-SEATS模型进行对比,预测精度得到较大提高。
Abstract:Due to a variety of external factors, there have been still errors in the prediction of monthly electricity sales before and after the Spring Festival. For this problem, a comprehensive model is proposed based on X12 seasonal adjustment, ARIMA model and factorization machine. Firstly, X12 seasonal method is used to decompose the historical data of monthly electricity sales into seasonal trend-cycle, seasonal factors and irregular component; then ARIMA model and historical data average method are used to predict the trend component, irregular component and season component respectively; finally, the factor decomposition machine algorithm is used to make regression analysis on the seasonal ratio of sales volume of historical 1, 2 and 3 months and the days from the first day of corresponding month to the Spring Festival Day, so as to modify the prediction results. Eviews software is used for historical data statistics and calculation and the prediction accuracy is greatly improved as it compared the traditional ARIMA model with TRAMOSEATS model.
[1]石秀倩,于晓明.基于BP神经网络下用电负荷预测[J].工业控制计算机,2020,33(3):21-22.
[2]苏振宇,龙勇,汪於.基于季节调整和Holt-Winters的月度负荷预测方法[J].中国管理科学,2019,27(3):30-40.
[3]马婉贞,杜斌.基于改进灰色理论的中长期负荷预测方法研究[J].智能城市,2019,5(23):20-21.
[4]徐萍.基于国家电网公司的月度售电量预测研究[D].天津:天津商业大学,2018.
[5]张强,王毅,李鼎睿,等.基于X-12-ARIMA季节分解与年度电量校正的月度电量预测[J].电力建设,2017,38(1):76-83.
[6]颜伟,程超,薛斌,等.结合X12乘法模型和ARIMA模型的月售电量预测方法[J].电力系统及其自动化学报,2016,28(5):74-80.
[7]崔和瑞,王娣.基于季节ARIMA模型的华北电网售电量预测研究[J].华东电力,2009,37(1):70-72.
[8]程超.基于时间序列法和回归分析法的改进月售电量预测方法研究[D].重庆:重庆大学,2016.
[9]刘建,赵加奎,陈雨泽,等.考虑春节影响的售电量预测结果修正方法[J].电信科学,2019,35(3):127-134.
[10]RENDLE S.Factorization machines[C]//2010 IEEE International Conference on Data Mining.Sydney:IEEE,2010:995-1000.
[11]赵衎衎,张良富,张静,等.因子分解机模型研究综述[J].软件学报,2019,30(3):799-821.
[12]RENDLE S.Factorization machines with lib FM[J].ACMTransactions on Intelligent Systems and Technology,2012,3(3):1-22.
[13]喻飞,赵志勇,魏波.基于差分进化的因子分解机算法[J].计算机科学,2016,43(9):269-273.
[14]王子豪,徐桂琼.基于高阶偏差的因子分解机推荐算法[J].计算机应用研究,2017,34(2):339-342.
[15]孟祥武,刘树栋,张玉洁,等.社会化推荐系统研究[J].软件学报,2015,26(6):1356-1372.
[16]张永凯,马欢.基于TRAMO-SEATS的月售电量预测方法及应用[J].电网与清洁能源,2018,34(2):72-78.
基本信息:
DOI:10.19573/j.issn2095-0926.202004008
中图分类号:TM73;F426.61
引用信息:
[1]王安东,王东涛,叶剑华.基于因子分解机的月售电量预测模型[J].天津职业技术师范大学学报,2020,30(04):42-47.DOI:10.19573/j.issn2095-0926.202004008.
基金信息:
天津市自然科学基金资助项目(18JCQNJC74500);; 天津市津南区科技计划项目(20161508)