109 | 5 | 20 |
下载次数 | 被引频次 | 阅读次数 |
为解决多片FPGA之间的多时钟同步问题,提出了多时钟硬件同步的思想。对多片FPGA芯片之间的时钟同步方法进行研究,实现了由4片FPGA芯片搭建的多FPGA神经元网络仿真平台。利用3层的FHN(Fitz Hugh-Nagumo)模型对多FPGA神经元网络仿真平台进行验证。结果表明:相对于市场现有的FPGA仿真平台,多FPGA神经元网络仿真平台具有计算速度快、可靠性强、配置灵活、易于扩展、适用于大规模神经网络仿真等优点,能够应用于各种神经元网络的仿真与分析。
Abstract:In order to solve the problem of multi-clock synchronization between multiple FPGA, this study proposes the idea of multi-clock hardware synchronization, analyses the method of clock synchronization between multi-FPGA, and designs a simulation platform of multi-FPGA based on neural network, which is set up by 4 FPGA chips. The simulation platform of multi-FPGA neural network is verified by the three layer Fitz Hugh-Nagumo(FHN) model. The verification results show that, compared with the existing FPGA platform, the multi-FPGA neural network simulation platform has the advantages of high computational efficiency, high reliability, flexible configuration, easy to expand, suitable for large-scale neural network simulation and so on. The proposed design can be widely applied in fields such as the artificial intelligence or the dynamical characteristics investigation of the neural networks.
[1]焦李成,杨淑媛,刘芳,等.神经网络七十年:回顾与展望[J].计算机学报,2016,39(8):1697-1716.
[2]苏海,张群英,叶盛波,等.基于FPGA内嵌DSP硬核的脉冲压缩设计与实现[J].电子测量技术,2016(9):96-101.
[3]操小文,薄华.基于卷积神经网络的手势识别研究[J].微型机与应用,2016,35(9):55-57.
[4]赵爱清.神经元网络分析与多FPGA实现[D].天津:天津职业技术师范大学,2016.
[5]周庆芳.基于FPGA的八位加法器的设计[J].教育界,2016(22):190.
[6]王守岩,王学廉,何江弘.脑深部刺激未来发展的机遇与挑战[J].中国生物医学工程学报,2015,34(4):455-463.
[7]宋威,方穗明,姚丹,等.多FPGA设计的时钟同步[J].计算机工程,2008,34(7):245-247.
[8]FITZHUGH R,NAGUMO J.Impulses and physiological states in theoretical models of nerve membrane[J].Biophysical Journal,1961(6):445-446.
[9]章毅,郭泉,王建勇.大数据分析的神经网络方法[J].工程科学与技术,2017,49(1):9-18.
[10]YANG S M,WANG J,LI S,et al.Cost-efficient FPGA implementation of basal ganglia and their Parkinsonian analysis[J].Neural Networks,2015,71(C):62-75.
[11]WANG J,YANG S M,DENG B,et al.Multi-FPGA implementation of feedforward network and its performance analysis[C]//Proceedings of the 34th Chinese Control Conference.Hangzhou:IEEE,2015:3457-3461.
基本信息:
DOI:10.19573/j.issn2095-0926.201702002
中图分类号:TN791;TP183
引用信息:
[1]孙凡,李会艳,赵爱清.多FPGA神经元网络仿真平台设计[J].天津职业技术师范大学学报,2017,27(02):8-12.DOI:10.19573/j.issn2095-0926.201702002.
基金信息:
国家自然科学基金资助项目(61374182)