nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2017, 02, v.27;No.91 8-12
多FPGA神经元网络仿真平台设计
基金项目(Foundation): 国家自然科学基金资助项目(61374182)
邮箱(Email):
DOI: 10.19573/j.issn2095-0926.201702002
摘要:

为解决多片FPGA之间的多时钟同步问题,提出了多时钟硬件同步的思想。对多片FPGA芯片之间的时钟同步方法进行研究,实现了由4片FPGA芯片搭建的多FPGA神经元网络仿真平台。利用3层的FHN(Fitz Hugh-Nagumo)模型对多FPGA神经元网络仿真平台进行验证。结果表明:相对于市场现有的FPGA仿真平台,多FPGA神经元网络仿真平台具有计算速度快、可靠性强、配置灵活、易于扩展、适用于大规模神经网络仿真等优点,能够应用于各种神经元网络的仿真与分析。

Abstract:

In order to solve the problem of multi-clock synchronization between multiple FPGA, this study proposes the idea of multi-clock hardware synchronization, analyses the method of clock synchronization between multi-FPGA, and designs a simulation platform of multi-FPGA based on neural network, which is set up by 4 FPGA chips. The simulation platform of multi-FPGA neural network is verified by the three layer Fitz Hugh-Nagumo(FHN) model. The verification results show that, compared with the existing FPGA platform, the multi-FPGA neural network simulation platform has the advantages of high computational efficiency, high reliability, flexible configuration, easy to expand, suitable for large-scale neural network simulation and so on. The proposed design can be widely applied in fields such as the artificial intelligence or the dynamical characteristics investigation of the neural networks.

参考文献

[1]焦李成,杨淑媛,刘芳,等.神经网络七十年:回顾与展望[J].计算机学报,2016,39(8):1697-1716.

[2]苏海,张群英,叶盛波,等.基于FPGA内嵌DSP硬核的脉冲压缩设计与实现[J].电子测量技术,2016(9):96-101.

[3]操小文,薄华.基于卷积神经网络的手势识别研究[J].微型机与应用,2016,35(9):55-57.

[4]赵爱清.神经元网络分析与多FPGA实现[D].天津:天津职业技术师范大学,2016.

[5]周庆芳.基于FPGA的八位加法器的设计[J].教育界,2016(22):190.

[6]王守岩,王学廉,何江弘.脑深部刺激未来发展的机遇与挑战[J].中国生物医学工程学报,2015,34(4):455-463.

[7]宋威,方穗明,姚丹,等.多FPGA设计的时钟同步[J].计算机工程,2008,34(7):245-247.

[8]FITZHUGH R,NAGUMO J.Impulses and physiological states in theoretical models of nerve membrane[J].Biophysical Journal,1961(6):445-446.

[9]章毅,郭泉,王建勇.大数据分析的神经网络方法[J].工程科学与技术,2017,49(1):9-18.

[10]YANG S M,WANG J,LI S,et al.Cost-efficient FPGA implementation of basal ganglia and their Parkinsonian analysis[J].Neural Networks,2015,71(C):62-75.

[11]WANG J,YANG S M,DENG B,et al.Multi-FPGA implementation of feedforward network and its performance analysis[C]//Proceedings of the 34th Chinese Control Conference.Hangzhou:IEEE,2015:3457-3461.

基本信息:

DOI:10.19573/j.issn2095-0926.201702002

中图分类号:TN791;TP183

引用信息:

[1]孙凡,李会艳,赵爱清.多FPGA神经元网络仿真平台设计[J].天津职业技术师范大学学报,2017,27(02):8-12.DOI:10.19573/j.issn2095-0926.201702002.

基金信息:

国家自然科学基金资助项目(61374182)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文