nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 01, v.34 66-73
考虑外部因素的MCNN-ABiLSTM交通流量预测模型
基金项目(Foundation): 天津市教委科研计划项目(2021KJ008); 天津市津南区科技计划项目(20220105)
邮箱(Email): c_j_223@163.com.;
DOI: 10.19573/j.issn2095-0926.202401012
摘要:

针对交通流量序列的时间依赖性、空间相关性及易受外部因素的干扰等问题,提出一种基于多尺度卷积神经网络和融合注意力机制的双向长短期记忆神经网络自适应融合预测模型(MCNN-ABiLSTM模型)。通过串联的多尺度结构增强卷积神经网络的特征提取能力,融合注意力机制的双向长短期记忆网络提升对时序特征的连续性、周期性的挖掘能力,将2个分支特征自适应融合以提升交通流量预测的准确性。同时,通过计算各路口时序流量的皮尔逊相关系数分析交通流量的空间相关性,并提出改进粒子群算法(IPSO)设置外部因素标签值。实验结果表明,MCNN-ABiLSTM模型比其他基线模型预测准确性更高,RMSE、MAE以及MAPE均有明显下降。

Abstract:

An adaptive fusion prediction model of bidirectional long short-term memory neural network based on multiscale convolutional neural network and fusion attention mechanism(MCNN-ABiLSTM) is proposed for the time dependency,spatial correlation,and susceptibility to external factors in traffic flow sequences. By concatenating a multi-scale structure to enhance the feature extraction capability of the convolutional neural network and integrating a bidirectional long short-term memory network with a fusion attention mechanism to improve the continuity and periodicity mining ability of temporal features,the adaptive fusion of two branch features is performed to enhance the accuracy of traffic flow prediction. Additionally,the spatial correlation of traffic flow is analyzed by calculating the Pearson correlation coefficients of time series traffic volumes at each crossing. Furthermore,an improved Particle Swarm Optimization(IPSO)algorithm is proposed to set the label values of external factors. The experimental results indicate that the MCNN-ABiLSTM model outperforms other baseline models in terms of prediction accuracy,with significant reductions in RMSE,MAE,and MAPE.

参考文献

[1]赵鹏,李璐.基于ARIMA模型的城市轨道交通进站量预测研究[J].重庆交通大学学报(自然科学版),2020,39(1):40-44.

[2]郭海锋,方良君,俞立.基于模糊卡尔曼滤波的短时交通流量预测方法[J].浙江工业大学学报,2013,41(2):218-221.

[3]刘钊,杜威,闫冬梅,等.基于K近邻算法和支持向量回归组合的短时交通流预测[J].公路交通科技,2017,34(5):122-128,158.

[4] CASTRO-NETO M,JEONG Y S,JEONG M K,et al. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions[J]. Expert Systems with Applications,2009,36(3):6164-6173.

[5]刘明宇,吴建平,王钰博,等.基于深度学习的交通流量预测[J].系统仿真学报,2018,30(11):4100-4105,4114.

[6]赵刚,王梦灵.基于模糊分析的LSTM交通流量预测[J].计算机工程与设计,2021,42(4):1103-1108.

[7] SIAMI-NAMINI S,TAVAKOLI N,NAMIN A S. The performance of LSTM and BiLSTM in forecasting time series[C]//2019 IEEE International Conference on Big Data(Big Data).CA,USA:IEEE,2019:3285-3292.

[8]刘耿耿,朱予涵,郭灿阳.基于双向长短期记忆网络的共享单车流量预测[J].小型微型计算机系统,2021,42(9):1871-1876.

[9]李磊,张青苗,赵军辉,等.基于改进CNN-LSTM组合模型的分时段短时交通流预测[J].应用科学学报,2021,39(2):185-198.

[10] LIU Y P,ZHENG H F,FENG X X,et al. Short-term traffic flow prediction with Conv-LSTM[C]//2017 9th International Conference on Wireless Communications and Signal Processing(WCSP). Nanjing:IEEE,2017:1-6.

[11]邵必林,史洋博,赵煜.融合注意力机制与LSTM的建筑能耗预测模型研究[J].软件导刊,2021,20(10):61-67.

[12]赵恒辉,黄德启,曾蓉,等.基于时空注意力Bi-LSTM模型的短时交通流预测[J].计算机仿真,2022,39(9):177-181,455.

[13]宋瑞蓉,路树华,王斌君,等.基于ABiLSTM与XGBoost组合模型的交通时间预测[J].软件导刊,2021,20(8):20-28.

[14]王庆荣,田可可,朱昌锋,等.融合多因素的短时交通流预测研究[J].计算机工程与应用,2022,58(21):309-316.

[15]张国赟,金辉.基于改进PSO-LSTM模型的城市轨道交通站点客流预测[J].计算机应用与软件,2021,38(12):110-114,134.

[16]苏攀,张伟,李强,等.基于改进粒子群算法的PID参数优化研究[J].软件导刊,2020,19(10):94-97.

[17] WU H,WANG J,NAN D L,et al. Transmission line fault cause identification method based on transient waveform image and MCNN-LSTM[J]. Measurement,2023,220:113422.

[18] DU Y,CUI N X,LI H X,et al. The vehicle’s velocity prediction methods based on RNN and LSTM neural network[C]//2020 Chinese Control and Decision Conference(CCDC). Hefei,China:IEEE,2020:99-102.

[19]许栋,杨关,刘小明,等.基于自适应特征融合与转换的小样本图像分类[J].计算机工程与应用,2022,58(24):223-232.

[20] HE R,XIAO Y P,LU X Y,et al. ST-3DGMR:Spatiotemporal 3D grouped multiscale ResNet network for regionbased urban traffic flow prediction[J]. Information Sciences,2023,624:68-93.

基本信息:

DOI:10.19573/j.issn2095-0926.202401012

中图分类号:U491.1;TP183

引用信息:

[1]杨国威,陈静,张昭冲等.考虑外部因素的MCNN-ABiLSTM交通流量预测模型[J].天津职业技术师范大学学报,2024,34(01):66-73.DOI:10.19573/j.issn2095-0926.202401012.

基金信息:

天津市教委科研计划项目(2021KJ008); 天津市津南区科技计划项目(20220105)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文