2,323 | 18 | 54 |
下载次数 | 被引频次 | 阅读次数 |
针对人眼识别犬类准确率不高且效率低的问题,对基于AlexNet网络模型的图像识别分类算法进行了改进。在传统AlexNet网络结构的基础上,部分筛减了卷积层,并在2层全连接层后增加了Dropout层及L2正则化以进一步减少过拟合,添加了通道维度的注意力机制。实验结果表明,本研究算法的准确率较传统算法提高了2%~5%,得到了一种能有效进行犬类图像识别分类的解决方案。
Abstract:Aiming at the problem of low accuracy and low efficiency in canine recognition by human eyes,this study tries to improve the image recognition and classification algorithm based on the AlexNet network model. On the basis of the traditional AlexNet network structure,the convolutional layer was partially reduced,the Dropout layer was added behind the two full connection layers,and the L2 regularization was added to further reduce the overfitting. The attention mechanism of channel dimension was added. The experimental results show that the accuracy of the proposed algorithm is about 2% to 5% higher than that of the traditional one. A solution that can effectively recognize and classify canine images is obtained.
[1]张荣,李伟平,莫同.深度学习研究综述[J].信息与控制,2018,47(4):385-397,410.
[2]尹宝才,王文通,王立春.深度学习研究综述[J].北京工业大学学报,2015,41(1):48-59.
[3]陈超,齐峰.卷积神经网络的发展及其在计算机视觉领域中的应用综述[J].计算机科学,2019,46(3):63-73.
[4]HINTON G E,OSINDERO S,TEH Y W.A fast learning algorithm for deep belief nets[J].Neural Computation,2006,18(7):1527-1554.
[5]司念文,张文林,屈丹,等.卷积神经网络表征可视化研究综述[EB/OL].(2021-05-18)[2021-07-12].https://tra.oversea.cnki.net/kcms/detail/detail.aspx?Db Code=CAPJ&dbname=CAPJLAST&filename=MOTO20210514003.
[6]SLADOJEVIC S,ARSENOVIC M,ANDERLA A,et al.Deep neural networks based recognition of plant diseases by leaf image classification[J].Computational Intelligence and Neuroscience,2016,2016:3289801.
[7]张宝燕.基于深度学习模型的图像识别应用研究[J].山西电子技术,2020(6):87-89,93.
[8]刘力哲.基于深度学习的表面缺陷检测算法研究[D].武汉:华中科技大学,2019.
[9]石翠萍,谭聪,左江,等.基于改进Alex Net卷积神经网络的人脸表情识别[J].电讯技术,2020,60(9):1005-1012.
[10]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Image Net classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90.
[11]郭原东,雷帮军,聂豪,等.基于深度学习的智能高精度图像识别算法[J].现代电子技术,2021,44(4):173-176.
[12]张春晓,何军.一种基于对抗正则化的图像特征提取方法[J].小型微型计算机系统,2021,42(5):1034-1038.
[13]廖璐明,张伟,王亚刚.基于注意力机制的交通标志识别[J].小型微型计算机系统,2021,42(6):1262-1266.
[14]张立东,李居尚,战荫泽.基于改进型正则化算法的图像融合优化研究[J].激光与红外,2021,51(5):663-667.
基本信息:
DOI:10.19573/j.issn2095-0926.202201011
中图分类号:TP391.41;TP183
引用信息:
[1]段傲,李莉,杨旭.基于AlexNet的图像识别与分类算法[J].天津职业技术师范大学学报,2022,32(01):63-66.DOI:10.19573/j.issn2095-0926.202201011.
基金信息:
天津市科技计划项目(20YDTPJC01110)