184 | 3 | 15 |
下载次数 | 被引频次 | 阅读次数 |
针对现行商业CT中搭建的滤波反投影算法已不能胜任低剂量照射条件下的影像重建任务问题,提出了一种新的基于非线性压缩感知的图像重建算法。该算法将目标函数的正则化项引入了非线性滤波操作,有效地利用了非线性滤波在图像去噪方面的优势。利用凸优化领域的临近点算法对目标函数进行最小化处理,构建出行处理型快速迭代算法。利用实际临床腹部影像的重建,对比了传统算法和新算法的优劣。研究结果表明:新算法在去除图像噪声、保存图像细节、刻画组织边缘方面具备明显优势。
Abstract:The currently used filtered back-projection(FBP) image reconstruction algorithm embedded in commercial CT is not competent for the image reconstruction task under the condition of low-dose radiation, and as a result, a new kind of algorithm is proposed based on nonlinear compressed sensing. The regularization term of the cost function is introduced into the nonlinear filtering operation, which makes effective use of the advantages of nonlinear filtering in image de-noising. The cost function is minimized by using the proximal splitting theory of convex optimization field, and a fast iterative algorithm of row-action processing type is established. The advantages and disadvantages of the traditional algorithm is compared with the new algorithm by the task of reconstructing an actual clinical abdominal image.The result shows that the new algorithm possesses obvious advantages in removing image noise, preserving image details and depicting tissue edges.
[1]郑祖洪.颅脑CT运用于脑出血诊断中的临床价值分析[J].临床医药文献电子杂志,2017,4(70):13786.
[2]岳保荣,范瑶华.全国CT应用质量管理现状和建议[J].中华放射医学与防护杂志,2002,22(2):132-133.
[3]周燕. CT检查的辐射危害及控制策略[J].中国卫生产业,2017,14(21):50-51.
[4] YU L,LIU X,LENG S,et al. Radiation dose reduction in computed tomography:techniques and future perspective[J]. Imaging Med,2009,1(1):65-84.
[5]赵君禄,聂关伟,王猛,等.自动曝光技术结合迭代重建技术降低肝脏CT辐射剂量的可行性分析[J].山东医药,2016,56(13):35-37.
[6] KUDO H,SUZUKI T,RASHED E A. Image reconstruction for sparse-view CT and interior CT-introduction to compressed sensing and differentiated backprojection[J]. Quantitative Imaging in Medicine and Surgery,2013,3(3):147-161.
[7] DONG J,KUDO H. Proposal of compressed sensing using nonlinear sparsifying transform for CT image reconstruction[J]. Medical Imaging Technology,2016,34(5):235-244.
[8] CHAE B G,LEE S. Sparse-view CT image recovery using two-step iterative shrinkage-thresholding algorithm[J]. ETRI Journal,2015,37(6):1251-1258.
[9]权雪宁,何文章,冀东江. Shearlet变换在图像重建中的应用[J].天津职业技术师范大学学报,2019,29(2):39-42,58.
[10] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory,2006,52(4):1289-1306.
[11] CANDES E J,ROMBERG J,TAO T. Robust uncertainty princ iples:exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory,2006,52(2):489-509.
[12] SIDKY E Y,PAN X. Image reconstruction in circular conebeam computed tomography by constrained,total-variation minimization[J]. Physics in Medicine and Biology,2008,53(17):4777-4807.
[13]DONG J,YANG D,KUDO H. Nonlinear filtered compressed sensing applied on image de-noising[C]//International Conference on Multimedia and Image Processing(ICMIP). Zhuhai:Beijing Normal University,2021:89-101.
[14] GE Y S,SU T,ZHU J T,et al. ADAPTIVE-NET:deep computed tomography reconstruction network with analytical domain transformation knowledge[J]. Quantitative Imaging in Medicine and Surgery,2020,10(2):415-427.
[15]YIN X R,ZHAO Q L,LIU J,et al. Domain progressive 3D residual convolution network to improve low-dose CT imaging[J]. IEEE Transactions on Medical Imaging,2019,38(12):2903-2913.
[16]董建,毕丹阳,杨耿煌,等.探测器故障下医用CT图像重建的容错算法开发[J].天津职业技术师范大学学报,2020,30(1):7-12,25.
[17] HERMAN G T,MEYER L B. Algebraic reconstruction techniques can be made computationally efficient(positron emission tomography application)[J]. IEEE Transactions on Medical Imaging,1993,12(3):600-609.
[18] CHAMBOLLE A. An algorithm for total variation minimization and applications[J]. Journal of Mathematical Imaging and Vision,2004,20(1/2):89-97.
[19]DURAN J,COLL B,SBERT C. Chambolle′s projection algorithm for total variation denoising[J]. Image Processing on Line,2013,3:311-331.
[20]刘明娜,王谦,杨新,等.图像质量客观评价方法在CT图像中的应用[J].生物医学工程学杂志,2011,28(2):357-364.
基本信息:
DOI:10.19573/j.issn2095-0926.202102001
中图分类号:TP391.41
引用信息:
[1]董建,陈昊,孟庆宽等.低剂量照射条件下CT影像快速重建算法研究[J].天津职业技术师范大学学报,2021,31(02):1-7+85.DOI:10.19573/j.issn2095-0926.202102001.
基金信息:
天津市自然科学基金青年项目(18JCQNJC04500);天津市自然科学基金绿色通道项目(18JCYBJC43600); 天津市留学人员择优资助项目(201819); 天津职业技术师范大学科研发展基金资助项目(KYQD1808)