nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2022, 01, v.32 67-72
废旧锂电池梯次利用质量控制研究
基金项目(Foundation): 教育部人文社科规划项目(20YJA630020)
邮箱(Email): tuteguqiaolunlucy@163.com;
DOI: 10.19573/j.issn2095-0926.202201012
摘要:

针对由制造商主导的废旧锂电池重组再制造过程中,废旧锂电池质量不确定和信息传递不对称影响重组电池质量的问题,构建了由回收商、拆解检测中心和制造商三者构成的锂电池再制造三级逆向供应链模型。仿真分析在拆解检测中心和制造商信息不对称情况下,制造商通过采取增大抽检比例r和与拆解检测中心签订质量惩罚系数的措施,使拆解中心主动降低检测误差率。研究发现:当检测误差、制造商质量惩罚损失、制造商对拆解检测中心质量惩罚都存在时,制造商可以通过决策质量惩罚系数λ的取值大小来约束拆解检测中心,使拆解检测中心主动降低检测误差率。此外,制造商可以确定不同检测误差率下的最优抽检比例r。

Abstract:

In the remanufacturing process of waste lithium batteries led by manufacturers,the uncertain quality and the information transmission asymmetry affect the quality of recombinant batteries. To address this problem,a three-stage reverse supply chain model of lithium battery remanufacturing is established,which consists of recyclers,dismantling testing centers,and manufacturers. Since there is asymmetric information between disassembly testing centers and man-ufacturers,the latter increases the sampling ratio r and signs a quality penalty coefficient with the former to make the former actively reduce the inspection error rate. It is found that when inspection errors occur,and manufacturers penalize the losses for poor quality and punish the dismantling centers for poor quality,the manufacturer can constrain the dismantling testing centers by deciding the value of quality penalty coefficient λ,so that the latter will actively reduce the inspection error rate. In addition,manufacturers can determine the optimal sampling proportion r under different inspection error rates.

参考文献

[1]周航,马玉骁.新能源汽车动力电池回收利用工作进展及标准解析[J].中国质量与标准导报,2019(7):37-43.

[2]李臻,董会超.退役锂离子动力电池梯次利用可行性研究[J].电源技术,2016,40(8):1582-1584.

[3]高震,张新慧,颜勇,等.退役锂离子电池梯次利用状态区间划分[J].电池,2021,51(2):209-213.

[4]吴远忠,黄菊文,朱昊晨,等.废旧锂离子动力电池的性能和梯次利用的可能性研究[J].上海节能,2021(1):32-37.

[5]贾蕗路,宋华美,王浩,等.储能系统中梯次利用动力电池容量优化配置研究进展[J].科学技术与工程,2018,18(26):153-159.

[6]张雷,刘颖琦,张力,等.中国储能产业中动力电池梯次利用的商业价值[J].北京理工大学学报(社会科学版),2018,20(6):34-44.

[7]白恺,李娜,范茂松,等.大容量梯次利用电池储能系统工程技术路线研究[J].华北电力技术,2017(3):39-45.

[8]李建林,修晓青,刘道坦,等.计及政策激励的退役动力电池储能系统梯次应用研究[J].高电压技术,2015,41(8):2562-2568.

[9]李建林,李雅欣,吕超,等.退役动力电池梯次利用关键技术及现状分析[J].电力系统自动化,2020,44(13):172-183.

[10]ALFARO-ALGABA M,RAMIREZ F J.Techno-economic and environmental disassembly planning of lithium-ion electric vehicle battery packs for remanufacturing[J].Resources,Conservation and Recycling,2020,154:104461.

[11]STANDRIDGE C R,HASAN M M.Post-vehicle-application lithium-ion battery remanufacturing,repurposing and recycling capacity:modeling and analysis[J].Journal of Industrial Engineering and Management,2015,8(3):823-839.

[12]TAO Y B,XUE J H,XIA M,et al.Economic feasibility of echelon utilization battery in photovoltaic energy storage[J].E3S Web of Conferences,2020,194:02001.

[13]张玉春,周金华.再制造优先闭环供应链质量控制与优化系统动力学模型及仿真[J].工业工程与管理,2016,21(2):92-99,107.

[14]KIM Y,JUN H B,KIRITSIS D,et al.A methodology for modeling a quality embedded remanufacturing system[C]//Advances in Production Management Systems.Boston:Springer US,2007:281-288.

[15]CHAO G H,IRAVANI S M R,SAVASKAN R C.Quality improvement incentives and product recall cost sharing contracts[J].Management Science,2009,55(7):1122-1138.

[16]冯昱.基于系统动力学的闭环供应链再制造品质量水平选择[D].兰州:兰州理工大学,2018.

基本信息:

DOI:10.19573/j.issn2095-0926.202201012

中图分类号:X705

引用信息:

[1]李洛康,顾巧论.废旧锂电池梯次利用质量控制研究[J].天津职业技术师范大学学报,2022,32(01):67-72.DOI:10.19573/j.issn2095-0926.202201012.

基金信息:

教育部人文社科规划项目(20YJA630020)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文