天津职业技术师范大学理学院;
为研究一类带有双重不确定项的分数阶耗损型变形耦合发电机系统的同步问题,在驱动系统与响应系统为不同阶数的情况下,基于自适应滑模控制设计出非奇异分数阶终端滑模控制器,解决了驱动系统与响应系统的同步。为削弱因切换增益引入导致的抖振,加入基于专家经验的模糊控制,通过Lyapunov稳定性定理验证误差系统最终达到稳定,并采用数值仿真的方法检验控制器性能。研究结果表明:该控制策略具有较强的鲁棒性,且可使驱动系统与响应系统达到同步。
95 | 3 | 7 |
下载次数 | 被引频次 | 阅读次数 |
[1] MANDELBROT B.分形对象:形、机遇和维数[M].文志英,苏虹,译.北京:世界图书出版公司,1999.
[2] BARPI F,VALENTE S. Creep and fracture in concrete:a fractional order rate approach[J]. Engineering Fracture Mechanics,2002,70(5):611-623.
[3] PHAM V T,OUANNAS A,VOLOS C,et al. A simple fractional-order chaotic system without equilibrium and its synchronization[J]. AEU-International Journal of Electronics and Communications,2018,86:69-76.
[4] MODIRI A,MOBAYEN S. Adaptive terminal sliding mode control scheme for synchronization of fractional-order uncertain chaotic systems[J]. ISA Transactions,2020,105:33-50.
[5] YOUSEFPOURB A,JAHANSHAHIA H,JESUS M,et al.Adaptive synchronization and its application to voice encryption[J]. Applied Mathematics and Computation,2020,185(3):125-310.
[6] SUN G H,MA Z Q. Practical tracking control of linear motor with adaptive fractional order terminal sliding mode control[J]. IEEE/ASME Transactions on Mechatronics,2017,22(6):2643-2653.
[7] HWANG G C,LIN S C. A stability approach to fuzzy control design for nonlinear systems[J]. Fuzzy Sets and Systems,1992,48(3):279-287.
[8] ZHANG W W,JI D C,WU R C,et al. Lag projective synchronization of fractional-order delayed chaotic systems[J]. Journal of the Franklin Institute,2019,356(3):1522-1534.
[9] LIN T C,LEE T Y,BALAS V E. Adaptive fuzzy sliding mode control for synchronization of uncertain fractional order chaotic systems[J]. Chaos,Solitons&Fractals,2011,44(10):791-801.
[10] DELAVARI H,GHADERI R,RANJBAR A,et al. Fuzzy fractional order sliding mode controller for nonlinear systems[J]. Communications in Nonlinear Science and Numerical Simulation,2010,15(4):963-978.
[11]毛北行.分数阶具有不确定项和外扰的超混沌金融系统的滑模同步[J].工程数学学报,2020,37(2):146-154.
[12] CUI X M,ZHAO X S,GUO Y F,et al. Adaptive fuzzy terminal sliding mode synchronization of uncertain Newtonleipnik chaotic system[C]//2020 6th International Conference on Control,Automation and Robotics(ICCAR). Singapore:IEEE,2020:309-313.
[13]WANG R M,ZHANG Y N,CHEN Y Q,et al. Fuzzy neural network-based chaos synchronization for a class of fractional-order chaotic systems:an adaptive sliding mode control approach[J]. Nonlinear Dynamics,2020,100(2):1275-1287.
[14]毛北行,周长芹.分数阶不确定Duffling混沌系统的终端滑模同步[J].东北师大学报(自然科学版),2018,50(2):47-50.
[15]孙娜燕.耦合发电机系统建模及混沌控制研究[D].北京:华北电力大学,2013.
[16]王兴亮,秦露露,顾华,等.永磁同步电机分数阶改进快速终端滑模控制[EB/OL].(2020-06-04)[2020-10-10].https://doi.org/10.19635/j.cnki.csu-epsa.000467.
[17]王战伟,王建军.分数阶非线性系统的有限时间滑模同步控制[J].安徽大学学报(自然科学版),2020,44(2):20-23.
[18]程春蕊,毛北行.一类不确定分数阶舰船运动混沌系统的滑模同步控制[EB/OL].(2019-11-28)[2020-12-01].http://kns.cnki.net/kcms/detail/34.1063.N.20191128.1011.010.html.
[19]陈国栋.模糊自适应滑模控制在航向控制器中的应用[J].舰船科学技术,2020,42(10):40-42.
[20] JAHANSHAHI H,YOUSEFPOUR A,MUNOZ-PACHECO J M,et al. A new multi-stable fract ional-order four-dimensional system with self-excited and hidden chaotic attractors:dynamic analysis and adaptive synchronization using a novel fuzzy adaptive sliding mode control method[J].Applied Soft Computing,2020,87:105943.
[21] LIU S,ZHANG R Z,WANG Q Y,et al. Sliding mode synchronization between uncertain Watts-Strogatz smallworld spatiotemporal networks[J]. Applied Mathematics and Mechanics,2020,41(12):1833-1846.
[22]李安平,沈细群.不同维不同阶的分数阶混沌系统同步及仿真[J].计算机仿真,2011,28(11):196-200.
[23]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2017.
[24]王立新.模糊系统与模糊控制教程[M].王迎军,译.北京:清华大学出版社,2003.
[25]张兴鹏.不同阶混沌系统的同步研究[D].重庆:重庆大学,2015.
基本信息:
DOI:10.19573/j.issn2095-0926.202103010
中图分类号:TM31;TP273
引用信息:
[1]崔晓萌,赵小山.基于模糊滑模控制的分数阶耦合系统同步研究[J].天津职业技术师范大学学报,2021,31(03):53-58+63.DOI:10.19573/j.issn2095-0926.202103010.
基金信息:
国家自然科学基金资助项目(61703307); 天津市自然科学基金资助项目(17JCYBJC15700)